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ABSTRACT: The preparation and properties of a simple and cost-effective gold-
coated coir fiber electrode are reported. The natural fiber [Young’s modulus (Y) =
65.10 MPa], without any pretreatment, was sputter coated with gold to a thickness of
125 nm. The flexible and mechanically strong (Y = 83.84 MPa) composite fiber with
electrical resistivity 4.4 × 10−4 Ω cm behaved normally as an electrode in well
understood electrochemical processes such as cyclic voltammetry and electro-
polymerization. The electrode was evaluated both in aqueous and nonaqueous media.
The results were comparable with the control data generated using a conventional
gold wire electrode.
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■ INTRODUCTION

The liquid metal, Hg, several metallic solids such as Pt and Au,
and other conducting substrates such as graphite are well-
known electrode materials. Semiconducting materials are also
well studied as electrodes in photoelectrochemical processes.1

Superconducting electrodes too have been reported.2 Electro-
chemical processes are conducted on bare electrode surfaces or
after various types of modifications such as direct chemical
functionalization or through coating of conducting polymers,3,4

clays,5,6 zeolites,7 silica,8 and graphene.9 The latter, in turn, are
utilized to incorporate electro-active compounds, sensors, and
electrocatalysts. Conducting coatings over nonconducting
substrates are also reported, for example, indium−tin oxide
coating on glass that serves as an optically transparent
electrode.10

Although carbon electrodes such as graphite and carbon
paste are well known, such carbon is derived either from a
mineral resource or petroleum coke. With the growing interest
in the value addition of discarded bioresources, tailor-made
electrode materials fabricated from biomaterials will rise in
demand.11−14 Weavable fibers have been converted into
electroactive textiles used in supercapacitors.15 Twisting
configurations of working and counter electrodes in dye-
sensitized solar cells (DSCC) have also been studied.16,17 A
comprehensive review of wire-like flexible electrodes is available
in the literature.18 Reports on the use of bioresources as
electrode material are scant. Coir or coconut fibers are
inexpensive and abundantly available in many countries

including India. Coir fiber is used extensively for making
mats and ropes, while rubberized coir is used in mattresses. The
fiber comprises a thick wall of cellulose over which lignin is
deposited. It possesses important attributes such as non-
perishable nature, durability, wire-like appearance, and excellent
mechanical strength.19,20 Carbon dip-coated coir fiber encapsu-
lated in a glass capillary has been used in biosensing
applications.21,22 Metal-coated coconut fibers were manufac-
tured by electroplating; in this procedure, pretreated coconut
fiber was immersed in a solution of SnCl2, PdCl2, and other
salts, and the coated fiber was used for water purification and
electromagnetic shielding.23 Fabrication of a gold-coated wire-
like electrode made out of coir fiber is reported in the present
work. An ultrathin layer of gold was deposited over the fiber
without any pretreatment, and the composite was utilized as an
electrode. Gold was selected as the coating material because of
its noble nature, ease of sputter coating, and ample prior art on
its application as an electrode material. The suitability of the
electrode was demonstrated through common electrochemical
experiments.

■ EXPERIMENTAL PROCEDURE
All chemicals were of analytical grade and used as received. Potassium
chloride and tetraethylammonium tetrafluoroborate were purchased
from Spectrochem India, ferrocene carboxylic acid from Alfa Asear,
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and Ru(bpy)3Cl2.6H2O and aniline from Sigma Aldrich. Coir fiber
obtained from fully matured healthy coconut fruit was used for the
study and purchased from local market. HPLC grade solvents were
used for the study. Au coating of coir fiber was performed using
Polaron SC7620 mini-sputter at 8 Pascal pressure. SEM and EDX
analyses were done using a LEO 1430 VP scanning electron
microscope. Tensile strength testing was carried out for a specimen
length of 10 cm and diameter 0.18 mm using a universal testing
machine (Zwick Roell, type X force P, S/N 756324). A preload of 0.01
N was applied at a speed of 20 mm/min keeping grip to grip
separation of 4.74 cm at the start position. Young’s modulus (Y) was
determined from the regression slope in the elastic region of the
stress−strain curve. Current-voltage (I−V) measurements were
performed using a Keithley 2635A source meter unit (SMU).
Electrochemical experiments were performed using a Princeton
applied research potentiostat (PAR-STAT 2273) at room temperature
(24 ± 2 °C). A three-electrode assembly was used in all measurements
in which Au-coated coir fiber or Au wire (in control experiment) was
used as working electrodes, while platinum foil and Ag/AgCl (sat KCl)
were used as auxiliary and reference electrodes, respectively. The
contact in the working electrode was made through a spring-loaded
clip, which was suitably modified.24

Au Coating on Coir Fiber and Estimation of Coating
Thickness. Fibers were physically picked from the surface of the
coconut shell [Figure S1 (A), Supporting Information] and manually
separated into individual strands. Fibers of uniform diameter (130−
200 μm) were selected for the study [Figure S1 (B), Supporting
Information]. For coatings of Au, a bundle of fibers (75 to 100)
without any pretreatment were placed into the chamber of a sputter
coater (100 mm diameter × 100 mm height) (Figure S2, Supporting

Information). The vapor pressure of gold was maintained uniformly in
the chamber which facilitated uniform coating.25,26 After 1 h of
coating, the color of the fiber changed from yellow to dark brown
(Figure 1A). The fibers were removed from the coater and
characterized. The thickness of Au coating on the surface of the
fiber was determined using the following equation.

=d KIVt (1)

where d is the coating thickness in angstrom; K is an experimentally
determined constant (for Au used with air, K = 0.07 approximately); I
is the plasma current in mA (5 mA in present study), V is the bias
voltage in kV (1 kV in present study), and t is the sputtering time in
seconds (3600 s in present study).

Measurement of Current−Voltage Plot and Calculation of
Specific Resistance (ρ). The contacts on the coir fiber electrode for
measurement of I−V characteristics were made using conducting silver
paste and copper wire. The copper wire was connected to the SMU
with a crocodile clip. The bias current of ±1.0 mA was applied, and
corresponding voltage was measured. The sweep was generated by the
instrument, and 32 measured data points were averaged automatically.
The averaged and stored data were collected and plotted to obtain the
I−V curve. The electrical resistance of the coir fiber electrode was
calculated from the slope of the curve. The specific resistance of the
coating was calculated considering it as a sheet and applying the
equations: Specific resistance ρ = R × (W × L)/H; wherein the width
of the sheet (thickness of the coating) is W = 125 nm = 1.25 × 10−5

cm; length of the sheet (circumference of the coating, i.e., 2πr) is L =
2π(0.19)/2 mm = 5.97 × 10−2 cm; height (length of the fiber between
two contacts) is H = 1.4 cm; and measured resistance (from slope of

Figure 1. (A) Optical micrograph of gold-coated coir fiber (in-set: uncoated), (B) SEM image of uncoated coir fiber, (C) SEM image of gold-coated
coir fiber (coir electrode), (D) SEM image of deposited polyaniline on coir electrode, and (E) EDX spectra of C.
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I−V curve) is R = 8.27 × 102 ohm. From the above data, ρ = 4.4 ×
10−4 ohm cm.
Cyclic Voltammetry (CV) of Ferrocene Carboxylic Acid in

Aqueous Medium. A solution of ferrocene carboxylic acid (3 mM)
in 0.1 M KCl was prepared using Milli Q water (resistivity ≥18 M Ω).
The experiment was performed in a 10 mL open glass cell using the
conventional three electrode configuration. CVs were recorded at
different scan rates (10−150 mV/s) without any agitation. The gold-
coated coir fiber electrode and an Au wire were used as working
electrodes.
Cyclic Voltammetry Study in Acetonitrile Medium. CVs were

recorded under N2 atmosphere in an airtight cell. One mM solution of
[Ru(bpy)3]Cl2 was prepared in dry acetonitrile in the presence of 0.1
M tetraethylammonium tetrafluoroborate (supporting electrolyte). N2

was purged for 10 min before start of the experiment. CVs were
recorded at various scan rates (25−300 mV/s) without any agitation.
Electrochemical Polymerization of Aniline on Coir Fiber

Electrode. Anilinium sulfate monomer was prepared by dissolving 0.1
M aniline in 0.5 M H2SO4 followed by sonication for 5−8 min.
Electro-polymerization on a coir fiber electrode in an open glass cell
was carried out using 10 mL of freshly prepared monomer. A total of
35 potentiodynamic cycles were run in potential window of −0.2 to
0.8 V vs Ag/AgCl.

■ RESULTS AND DISCUSSION

Preparation of Gold-Coated Coir Fiber. Dry coir fibers
of uniform dimension were gold coated using a sputter coater.
The thickness of the gold layer was estimated to be 126 nm
using eq 1 in the Experimental section. SEM was also recorded
for the standalone gold coating after thermal decomposition of
the coir fiber at 700 °C (Figure S3, Supporting Information).
As shown in Figure S3 (A) of the Supporting Information, the
surface revealed an agglomeration of many individual gold
particles forming a somewhat rough surface. Further, it was
deduced from Figure S3 (B) of the Supporting Information that
the thickness of the gold coating was fairly uniform. Figure 1A
shows a representative optical micrograph of the gold-coated
fiber (inset shows the uncoated fiber). It is shown in the
scanning electron micrographs of Figure 1B and C that the
surface roughness of the uncoated fiber manifested in the
coated fiber also. The EDX spectra of the as-coated surface
predominantly showed the peaks due to Au (Figure 1E).
Mechanical Properties of Gold-Coated Coir Fiber. The

stress−strain curve recorded during tensile testing of the
uncoated and gold-coated coir fibers is given in Figure 2.27 Two
slopes corresponding to elastic and inelastic deformation
regions and the failure point “C” are shown in the plot. The
elastic limit reduced from a strain value of 2.75% to 1% upon
coating. However, the trends were opposite in the inelastic
region (section “bc” of the curve). The failure point (point “c”)
rose from a strain limit of 9.5% to 14.0% when the fiber was
coated. Y was calculated from the stress−strain curves and
found to be 65.10 and 83.84 MPa for uncoated and coated coir,
respectively.
The Current−Voltage (I−V) Profile of Gold-Coated

Coir Fiber. The I−V profile of the coated fiber was ohmic (R2

= 1) between ±1.0 V bias voltage window (Figure 3). The
electrical resistivity of the coating was measured from the cross-
sectional area (thickness of coating 125 nm and circumference
of fiber 5.97 × 10−2 cm) of the coating and length of the fiber
(1.4 cm). The value was estimated to be 4.4 × 10−4 Ω cm (see
Experimental section for details). The electrode thus prepared
was used in various electrochemical processes in aqueous as
well as nonaqueous media.

Cyclic Voltammetry of Gold-Coated Coir Fiber in
Aqueous and Nonaqueous Media. Ferrocene carboxylic
acid was taken as an electroactive species for characterization of
the coir fiber electrode in aqueous medium. The cyclic
voltammograms of the ferrocene/ferrocenium couple obtained
at different scan rates (10−150 mV/s) in 0.1 mM aqueous KCl
are shown in Figure 4. The expected performance was
observed.28 The plot of (Ip) versus v1/2 was linear both for
cathodic and anodic peak potentials (inset of Figure 4).
However, the peak-to-peak separation of 90 mV suggested
deviation from the Nernstinian behavior for a 1-electron
transfer process. The linear variation of Ip versus v

1/2 indicates
that the process is diffusion limiting. Moreover, a small
intercept in the Ip versus v

1/2 plot is indicative of nonfaradaic
current.
A control experiment was carried out with the same redox

couple in aqueous solution using gold wire of comparable
diameter as the working electrode. It is shown in Figure 5 that
the peak current density was higher in the case of the coir fiber
electrode, despite the fact that the peaks were broader. This
observation was consistent with the evidently higher roughness
of the coir electrode surface as revealed by the SEM images in
Figure 1C and Figure S1 of the Supporting Information.

Figure 2. Stress−strain plot of pristine (black) and Au-coated (red)
coir.

Figure 3. Current−voltage (I−V) plot of the coir electrode using silver
contacts.
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Similar redox cycling in nonaquous (acetonitrile) medium
was also performed for [Ru(bpy)3]

3+/2+ (Figure 6). Tetraethy-
lammonium tetrafluoroborate (0.1 M) was taken as the
supporting electrolyte. Although the peak-to-peak separations
were large, the plots of (Ip)a and (Ip)c versus v

1/2 were linear,
and the reversible nature of the redox process was self-evident.
Thus, the electrode may have utility both in aqueous and
nonaqueous media.
Electropolymerization of Aniline on the Surface of

Gold-Coated Coir Fiber. The coir fiber electrode was
subsequently used in electropolymerization application, using
the polymerization of aniline as an example. The voltammo-
grams recorded over 35 cycles in 0.5 M H2SO4 containing 0.1
M aniline are reproduced in Figure 7. The profile bore
resemblance to that reported in the literature,29 albeit with
some differences. The peak attributed to the transformation of
the leucoemeraldine form to the emeraldine form in the anodic

cycle gradually shifted from around +240 mV in the initial
cycles to +350 mV toward the end, whereas a near constant
potential of about +150 mV has been observed on the
conventional gold electrode.30 The observed shift in anodic
peak has been attributed previously to the irreversible cross-
linking of the polyaniline in the anodic cycle,29,31 although in
the present case, substantial non-Faradaic effects cannot be
ruled out.

■ CONCLUSIONS
In conclusion, an electrode was developed by sputter coating of
gold over pristine coir fiber, a waste material, and it was used
successfully in various aqueous and nonaqueous electro-
chemical applications. Future research will attempt to improve
its performance and extend the work to other natural fibers
particularly banana and sisal fibersand metal coatings. It is
further proposed to study anodic stripping voltammetry for
analysis of Hg, Pb, and other heavy metals.

Figure 4. Cyclic voltammograms of 3 mM ferrocene carboxylic acid in
aqueous medium on a coir electrode having 0.1 M KCl as the
supporting electrolyte. Scan rate 10−150 mV/s. [Insert: plot of
cathodic (at 0.35 V) and anodic peak (at 0.44 V) current density vs
square root of scan rate.].

Figure 5. Cyclic voltammograms of ferrocene/ferrocenium redox on
conventional gold wire electrode and coir electrode recorded in
aqueous media. The scan rate was 50 mV/s.

Figure 6. Cyclic voltammograms of 1 mM [Ru(bpy)3]Cl2 in
nonaqueous medium (acetonitrile/0.1 M tetraethylammonium tetra-
fluoroborate) on coir electrode. Scan rate 25−300 mV/s. [Insert: plot
of cathodic (at 0.39 V) and anodic (at 0.62 V) peak current density vs
square root of scan rate.].

Figure 7. Potentiodynamic cycles (−0.2 to 0.8 V; 50 mV/s scan rate)
showing growth of polyaniline on gold-coated coir electrode from a
monomer solution containing 0.1 M aniline in 0.5 M H2SO4.
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Optical images of the pristine and cleaned fibers used in the
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